If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3500r^2+8500r-258.15=0
a = 3500; b = 8500; c = -258.15;
Δ = b2-4ac
Δ = 85002-4·3500·(-258.15)
Δ = 75864100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{75864100}=8710$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8500)-8710}{2*3500}=\frac{-17210}{7000} =-2+321/700 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8500)+8710}{2*3500}=\frac{210}{7000} =3/100 $
| x+4(2x-1)=6 | | 5x-9=-7x-93 | | 3x-10°3x=90 | | -4(1+2)=4(2-2r) | | 1.5n+2=4+1n | | 2(x-12)=42 | | 40*75+55-x=650 | | 48=5x+2(x+3) | | 6×-2y=-10 | | 1.2x-4.8=2.4x | | −10=3x−4 | | x^2-290x=0 | | n+4n=24 | | 1.2+3.6x=2.4x+8.4 | | (x-6)/|2x-4|=0 | | 1÷6(2x+5)=7-(x+7) | | -9(v+8)=2v-6 | | 7-j=14 | | L=-2.4t+75 | | 3x/8=144 | | 2(-5+3x)=8(x-3) | | 4x*4x+5x+19=16/5x*16/5x+22 | | 6(v+1)-(v+8)=-5+4v-5 | | 3x/8=16 | | 3x+(-2+4x);x=5 | | -30=2(v+3)-6v | | 2(x+6)=-(-2+8x) | | 3(-7x-8)=3(7-8x) | | C(x)=2x^2-720x+85,000 | | 70*4.5t=36 | | 2/15=8.4/7c | | 4y=38-1/2(4y+160 |